A class supporting filtered operations
Computes the intersection between this set and another set
The difference of this set and another set
This method is an alias for intersect
Creates a new set with an additional element, unless the element is already present
Creates a new set with an additional element, unless the element is already present.
Creates a new set with additional elements
Creates a new set with additional elements.
This method takes two or more elements to be added. Another overloaded variant of this method handles the case where a single element is added.
the first element to add.
the second element to add.
the remaining elements to add.
a new set with the given elements added.
Creates a new set by adding all elements produced by an iterator to this set
Creates a new set by adding all elements contained in another collection to this set
[use case] Concatenates this set with the elements of an iterator
Concatenates this set with the elements of an iterator.
the iterator to append.
a new set which contains all elements of this set
followed by all elements of that
.
Concatenates this set with the elements of an iterator
Concatenates this set with the elements of an iterator.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the iterator to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
which contains all elements of this set
followed by all elements of that
.
[use case] Concatenates this set with the elements of a traversable collection
Concatenates this set with the elements of a traversable collection.
the traversable to append.
a new set which contains all elements of this set
followed by all elements of that
.
Concatenates this set with the elements of a traversable collection
Concatenates this set with the elements of a traversable collection.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
which contains all elements of this set
followed by all elements of that
.
Creates a new set with a given element removed from this set
Creates a new set with a given element removed from this set.
Creates a new set from this set with some elements removed
Creates a new set from this set with some elements removed.
This method takes two or more elements to be removed. Another overloaded variant of this method handles the case where a single element is removed.
the first element to remove.
the second element to remove.
the remaining elements to remove.
a new set that contains all elements of the current set except one less occurrence of each of the given elements.
Creates a new set from this set by removing all elements produced by an iterator
Creates a new set from this set by removing all elements produced by an iterator.
the iterator producing the removed elements.
a new set that contains all elements of the current set
except one less occurrence of each of the elements produced by iter
.
Creates a new set from this set by removing all elements of another collection
Creates a new set from this set by removing all elements of another collection.
the collection containing the removed elements.
a new set that contains all elements of the current set
except one less occurrence of each of the elements of elems
.
Applies a binary operator to a start value and all elements of this set, going left to right
Applies a binary operator to a start value and all elements of this set, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as xs foldLeft z
.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this set$,
going left to right with the start value z
on the left:
{{{
op(...op(op(z, x_{1}), x_{2}), ..., x_{n})
}}}
where x,,1,,, ..., x,,n,,
are the elements of this set.
Applies a binary operator to all elements of this set and a start value, going right to left
Applies a binary operator to all elements of this set and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as xs foldRight z
.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value
the binary operator
the result of inserting op
between consecutive elements of this set$,
going right to left with the start value z
on the right:
{{{
op(x_{1}, op(x_{2}, ... op(x_{n}, z)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this set.
Appends all elements of this set to a string builder
Appends all elements of this set to a string builder.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this set without any separator string.
the string builder to which elements are appended.
the string builder b
to which elements were appended.
Appends all elements of this set to a string builder using a separator string
Appends all elements of this set to a string builder using a separator string.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this set, separated by the string sep
.
the string builder to which elements are appended.
the separator string.
the string builder b
to which elements were appended.
Appends all elements of this set to a string builder using start, end, and separator strings
Appends all elements of this set to a string builder using start, end, and separator strings.
The written text begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this set are separated by the string sep
.
the string builder to which elements are appended.
the starting string.
the separator string.
the ending string.
the string builder b
to which elements were appended.
(f andThen g)(x) == g(f(x))
Tests if some element is contained in this set
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
The object with which this set should be compared
true
, if this set can possibly equal that
, false
otherwise. The test
takes into consideration only the run-time types of objects but ignores their elements.
The factory companion object that builds instances of class Set
The factory companion object that builds instances of class Set.
(f compose g)(x) == f(g(x))
Tests if some element is contained in this set
Tests if some element is contained in this set.
[use case] Copies elements of this set to an array
Copies elements of this set to an array.
Fills the given array xs
with at most len
elements of
this set, starting at position start
.
Copying will stop once either the end of the current set is reached,
or the end of the array is reached, or len
elements have been copied.
the array to fill.
the starting index.
the maximal number of elements to copy.
Copies elements of this set to an array
Copies elements of this set to an array.
Fills the given array xs
with at most len
elements of
this set, starting at position start
.
Copying will stop once either the end of the current set is reached,
or the end of the array is reached, or len
elements have been copied.
the type of the elements of the array.
the array to fill.
the starting index.
the maximal number of elements to copy.
[use case] Copies elements of this set to an array
Copies elements of this set to an array.
Fills the given array xs
with all elements of
this set, starting at position 0
.
Copying will stop once either the end of the current set is reached,
or the end of the array is reached.
the array to fill.
Copies elements of this set to an array
Copies elements of this set to an array.
Fills the given array xs
with all elements of
this set, starting at position 0
.
Copying will stop once either the end of the current set is reached,
or the end of the array is reached.
the type of the elements of the array.
the array to fill.
[use case] Copies elements of this set to an array
Copies elements of this set to an array.
Fills the given array xs
with all elements of
this set, starting at position start
.
Copying will stop once either the end of the current set is reached,
or the end of the array is reached.
the array to fill.
the starting index.
Copies elements of this set to an array
Copies elements of this set to an array.
Fills the given array xs
with all elements of
this set, starting at position start
.
Copying will stop once either the end of the current set is reached,
or the end of the array is reached.
the type of the elements of the array.
the array to fill.
the starting index.
Copies all elements of this set to a buffer
Copies all elements of this set to a buffer.
The buffer to which elements are copied.
Counts the number of elements in the set which satisfy a predicate
Counts the number of elements in the set which satisfy a predicate.
the predicate used to test elements.
the number of elements satisfying the predicate p
.
Computes the difference of this set and another set
Selects all elements except first n ones
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to drop from this set.
a set consisting of all elements of this set except the first n
ones, or else the
empty set, if this set has less than n
elements.
Selects all elements except first n ones
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The number of elements to take
a set consisting of all elements of this set except the first n
ones, or else the
empty set, if this set has less than n
elements.
Drops longest prefix of elements that satisfy a predicate
Drops longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The predicate used to test elements.
the longest suffix of this set whose first element
does not satisfy the predicate p
.
Compares this set with another object for equality
Tests whether a predicate holds for some of the elements of this set
Tests whether a predicate holds for some of the elements of this set.
the predicate used to test elements.
true
if the given predicate p
holds for some of the elements
of this set, otherwise false
.
Selects all elements of this set which satisfy a predicate
Selects all elements of this set which satisfy a predicate.
the predicate used to test elements.
a new set consisting of all elements of this set that satisfy the given
predicate p
. The order of the elements is preserved.
Selects all elements of this set which do not satisfy a predicate
Selects all elements of this set which do not satisfy a predicate.
the predicate used to test elements.
a new set consisting of all elements of this set that do not satisfy the given
predicate p
. The order of the elements is preserved.
Finds the first element of the set satisfying a predicate, if any
Finds the first element of the set satisfying a predicate, if any.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an option value containing the first element in the set
that satisfies p
, or None
if none exists.
None
if iterable is empty
[use case] Builds a new collection by applying a function to all elements of this set and concatenating the results
Builds a new collection by applying a function to all elements of this set and concatenating the results.
the element type of the returned collection.
the function to apply to each element.
a new set resulting from applying the given collection-valued function
f
to each element of this set and concatenating the results.
Builds a new collection by applying a function to all elements of this set and concatenating the results
Builds a new collection by applying a function to all elements of this set and concatenating the results.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
resulting from applying the given collection-valued function
f
to each element of this set and concatenating the results.
[use case] Converts this set of traversable collections into a set in which all element collections are concatenated
Converts this set of traversable collections into a set in which all element collections are concatenated.
the type of the elements of each traversable collection.
a new set resulting from concatenating all element sets.
Converts this set of traversable collections into a set in which all element collections are concatenated
Converts this set of traversable collections into a set in which all element collections are concatenated.
the type of the elements of each traversable collection.
an implicit conversion which asserts that the element type of this
set is a Traversable
.
a new set resulting from concatenating all element sets.
Applies a binary operator to a start value and all elements of this set, going left to right
Applies a binary operator to a start value and all elements of this set, going left to right.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this set$,
going left to right with the start value z
on the left:
{{{
op(...op(z, x_{1}), x_{2}, ..., x_{n})
}}}
where x,,1,,, ..., x,,n,,
are the elements of this set.
Applies a binary operator to all elements of this set and a start value, going right to left
Applies a binary operator to all elements of this set and a start value, going right to left.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this set$,
going right to left with the start value z
on the right:
{{{
op(x_{1}, op(x_{2}, ... op(x_{n}, z)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this set.
Tests whether a predicate holds for all elements of this set
Tests whether a predicate holds for all elements of this set.
the predicate used to test elements.
true
if the given predicate p
holds for all elements
of this set, otherwise false
.
[use case] Applies a function f
to all elements of this set
Applies a function f
to all elements of this set.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
Applies a function f
to all elements of this set
Applies a function f
to all elements of this set.
Note: this method underlies the implementation of most other bulk operations. Subclasses should re-implement this method if a more efficient implementation exists.
the type parameter describing the result of function f
.
This result will always be ignored. Typically U
is Unit
,
but this is not necessary.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
The generic builder that builds instances of Set at arbitrary element types
The generic builder that builds instances of Set at arbitrary element types.
Partitions this set into a map of sets according to some discriminator function
Partitions this set into a map of sets according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new set.
the type of keys returned by the discriminator function.
the discriminator function.
A map from keys to sets such that the following invariant holds:
{{{
(xs partition f)(k) = xs filter (x => f(x) == k)
}}}
That is, every key k
is bound to a set of those elements x
for which f(x)
equals k
.
Partitions elements in fixed size sets
Partitions elements in fixed size sets.
the number of elements per group
An iterator producing sets of size size
, except the
last will be truncated if the elements don't divide evenly.
Tests whether this set is known to have a finite size
Tests whether this set is known to have a finite size.
All strict collections are known to have finite size. For a non-strict collection
such as Stream
, the predicate returns true
if all elements have been computed.
It returns false
if the stream is not yet evaluated to the end.
Note: many collection methods will not work on collections of infinite sizes.
Returns a hash code value for the object
Returns a hash code value for the object.
The default hashing algorithm is platform dependent.
Note that it is allowed for two objects to have identical hash
codes (o1.hashCode.equals(o2.hashCode)
) yet not be
equal (o1.equals(o2)
returns false
). A
degenerate implementation could always return 0
.
However, it is required that if two objects are equal
(o1.equals(o2)
returns true
) that they
have identical hash codes
(o1.hashCode.equals(o2.hashCode)
). Therefore, when
overriding this method, be sure to verify that the behavior is
consistent with the equals
method.
Selects the first element of this set
Selects the first element of this set.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Optionally selects the first element
Optionally selects the first element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Selects all elements except the last
Selects all elements except the last.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Computes the intersection between this set and another set
Tests if this set is empty
Tests if this set is empty.
Creates a new iterator over all elements contained in this iterable object
Creates a new iterator over all elements contained in this iterable object.
Selects the last element
Selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Optionally selects the last element
Optionally selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
[use case] Builds a new collection by applying a function to all elements of this set
Builds a new collection by applying a function to all elements of this set.
the element type of the returned collection.
the function to apply to each element.
a new set resulting from applying the given function
f
to each element of this set and collecting the results.
Builds a new collection by applying a function to all elements of this set
Builds a new collection by applying a function to all elements of this set.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
resulting from applying the given function
f
to each element of this set and collecting the results.
Finds the largest element
Finds the largest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the largest element of this set with respect to the ordering cmp
.
[use case] Finds the largest element
[use case] Finds the smallest element
Finds the smallest element
Finds the smallest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the smallest element of this set with respect to the ordering cmp
.
Displays all elements of this set in a string
Displays all elements of this set in a string using a separator string
Displays all elements of this set in a string using a separator string.
the separator string.
a string representation of this set. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this set are separated by the string sep
.
Displays all elements of this set in a string using start, end, and separator strings
Displays all elements of this set in a string using start, end, and separator strings.
the starting string.
the separator string.
the ending string.
a string representation of this set. The resulting string
begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this set are separated by the string sep
.
Tests whether the set is not empty
[use case] Builds a new collection by applying a partial function to all elements of this set on which the function is defined
Builds a new collection by applying a partial function to all elements of this set on which the function is defined.
the element type of the returned collection.
the partial function which filters and maps the set.
a new set resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Builds a new collection by applying a partial function to all elements of this set on which the function is defined
Builds a new collection by applying a partial function to all elements of this set on which the function is defined.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the partial function which filters and maps the set.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
resulting from applying the partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Partitions this set in two sets according to a predicate
Partitions this set in two sets according to a predicate.
the predicate on which to partition.
a pair of sets: the first set consists of all elements that
satisfy the predicate p
and the second set consists of all elements
that don't. The relative order of the elements in the resulting sets
is the same as in the original set.
[use case] Multiplies up the elements of this collection
Multiplies up the elements of this collection
Multiplies up the elements of this collection.
the result type of the *
operator.
an implicit parameter defining a set of numeric operations
which includes the *
operator to be used in forming the product.
the product of all elements of this set with respect to the *
operator in num
.
returns a projection that can be used to call non-strict filter
,map
, and flatMap
methods that build projections
of the collection
returns a projection that can be used to call non-strict filter
,map
, and flatMap
methods that build projections
of the collection.
Applies a binary operator to all elements of this set, going left to right
Applies a binary operator to all elements of this set, going left to right.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this set$,
going left to right:
{{{
op(...(op(x_{1}, x_{2}), ... ) , x_{n})
}}}
where x,,1,,, ..., x,,n,,
are the elements of this set.
Optionally applies a binary operator to all elements of this set, going left to right
Optionally applies a binary operator to all elements of this set, going left to right.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceLeft(op)
is this set is nonempty,
None
otherwise.
Applies a binary operator to all elements of this set, going right to left
Applies a binary operator to all elements of this set, going right to left.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this set$,
going right to left:
{{{
op(x_{1}, op(x_{2}, ..., op(x_{n-1}, x_{n})...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this set.
Optionally applies a binary operator to all elements of this set, going right to left
Optionally applies a binary operator to all elements of this set, going right to left.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceRight(op)
is this set is nonempty,
None
otherwise.
The collection of type set underlying this TraversableLike
object
The collection of type set underlying this TraversableLike
object.
By default this is implemented as the TraversableLike
object itself, but this can be overridden.
[use case] Checks if the other iterable collection contains the same elements in the same order as this set
Checks if the other iterable collection contains the same elements in the same order as this set.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
Checks if the other iterable collection contains the same elements in the same order as this set
Checks if the other iterable collection contains the same elements in the same order as this set.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the elements of collection that
.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
The size of this set
Selects an interval of elements
Selects an interval of elements.
Note: c.slice(from, to)
is equivalent to (but possibly more efficient than)
c.drop(from).take(to - from)
Note: might return different results for different runs, unless the underlying collection type is ordered.
the index of the first returned element in this set.
the index one past the last returned element in this set.
a set containing the elements starting at index from
and extending up to (but not including) index until
of this set.
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
the number of elements per group
An iterator producing sets of size size
, except the
last will be truncated if the elements don't divide evenly.
Spits this set into a prefix/suffix pair according to a predicate
Spits this set into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than)
(c takeWhile p, c dropWhile p)
, provided the evaluation of the predicate p
does not cause any side-effects.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the test predicate
a pair consisting of the longest prefix of this set whose
elements all satisfy p
, and the rest of this set.
Splits this set into two at a given position
Splits this set into two at a given position.
Note: c splitAt n
is equivalent to (but possibly more efficient than)
(c take n, c drop n)
.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the position at which to split.
a pair of sets consisting of the first n
elements of this set, and the other elements.
Defines the prefix of this object's toString
representation
Defines the prefix of this object's toString
representation.
Tests whether this set is a subset of another set
[use case] Sums up the elements of this collection
Sums up the elements of this collection
Sums up the elements of this collection.
the result type of the +
operator.
an implicit parameter defining a set of numeric operations
which includes the +
operator to be used in forming the sum.
the sum of all elements of this set with respect to the +
operator in num
.
Selects all elements except the first
Selects all elements except the first.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Selects first n elements
Selects first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Tt number of elements to take from this set.
a set consisting only of the first n
elements of this set, or else the
whole set, if it has less than n
elements.
Selects last n elements
Selects last n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to take
a set consisting only of the last n
elements of this set, or else the
whole set, if it has less than n
elements.
Takes longest prefix of elements that satisfy a predicate
Takes longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The predicate used to test elements.
the longest prefix of this set whose elements all satisfy
the predicate p
.
[use case] Converts this set to an array
Converts this set to an array
Converts this set to an array.
the type of the elements of the array. A ClassManifest
for this type must
be available.
an array containing all elements of this set.
Converts this set to an indexed sequence
Converts this set to an iterable collection
Converts this set to an iterable collection.
Converts this set to a list
Converts this set to a map
Converts this set to a map. This method is unavailable unless the elements are members of Tuple2, each ((K, V)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
Converts this set to a sequence
Converts this set to a set
Converts this set to a stream
Converts this set to a string
Converts this set to a string
Transposes this set of traversable collections into
Transposes this set of traversable collections into
Computes the union between of set and another set
Converts this set of pairs into two collections of the first and second halfs of each pair
Converts this set of pairs into two collections of the first and second halfs of each pair.
an implicit conversion which asserts that the element type of this set is a pair.
a pair sets, containing the first, respectively second half of each element pair of this set.
Creates a non-strict view of a slice of this set
Creates a non-strict view of a slice of this set.
Note: the difference between view
and slice
is that view
produces
a view of the current set, whereas slice
produces a new set.
Note: view(from, to)
is equivalent to view.slice(from, to)
Note: might return different results for different runs, unless the underlying collection type is ordered.
the index of the first element of the view
the index of the element following the view
a non-strict view of a slice of this set, starting at index from
and extending up to (but not including) index until
.
Creates a non-strict view of this set
Creates a non-strict view of this set.
Creates a non-strict filter of this set
Creates a non-strict filter of this set.
Note: the difference between c filter p
and c withFilter p
is that
the former creates a new collection, whereas the latter only restricts
the domain of subsequent map
, flatMap
, foreach
, and withFilter
operations.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an object of class WithFilter
, which supports
map
, flatMap
, foreach
, and withFilter
operations.
All these operations apply to those elements of this set which
satify the predicate p
.
[use case] Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs
Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
a new set containing pairs consisting of
corresponding elements of this set and that
. The length
of the returned collection is the minimum of the lengths of this set$ and that
.
Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs
Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the type of the second half of the returned pairs
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, B)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, B), That]
.
is found.
The iterable providing the second half of each result pair
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type (A1, B)
.
a new collection of type That
containing pairs consisting of
corresponding elements of this set and that
. The length
of the returned collection is the minimum of the lengths of this set$ and that
.
[use case] Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs
Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
the element to be used to fill up the result if this set is shorter than that
.
the element to be used to fill up the result if that
is shorter than this set.
a new set containing pairs consisting of
corresponding elements of this set and that
. The length
of the returned collection is the maximum of the lengths of this set$ and that
.
If this set is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this set, thatElem
values are used to pad the result.
Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs
Returns a set formed from this set and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the iterable providing the second half of each result pair
the element to be used to fill up the result if this set is shorter than that
.
the element to be used to fill up the result if that
is shorter than this set.
a new collection of type That
containing pairs consisting of
corresponding elements of this set and that
. The length
of the returned collection is the maximum of the lengths of this set$ and that
.
If this set is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this set, thatElem
values are used to pad the result.
[use case] Zips this set with its indices
Zips this set with its indices
Zips this set with its indices.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, Int)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, Int), That]
.
is found.
A new collection of type That
containing pairs consisting of all elements of this
set paired with their index. Indices start at 0
.
Computes the union between this set and another set
A class for sets of values Iterating through this set will yield values in increasing order of their ids.